AEPCL-About AEPCL

Power electronics is the "enabling infrastructuretechnology" that promotes the conversion of electrical powerfrom its raw form to the form needed by machines, motors, and electronic equipment. At the ShanghaiTech University, the Advanced Electric Power Conversion Laboratory (AEPCL) is devoted to the process, distribution, and control of electric energy. Currently, we have particular interest in wireless power transfer,ultra-high-frequency power conversion, applications of wide-band-gap devices,magnetic integration, modeling and control of resonant convertors, ubiquitous powerIoT, AI and big data based intelligent power network.

People - Faculty

  • Dr. Minfan Fu (傅旻帆)
  • Position: Lab Director
  • Institution: School of Information Science and Technology, ShanghaiTech Univ.
  • Address: Room 534, SIST Building 3, 393 Middle Huaxia Road, Shanghai 201210
  • Phone: (+8621)20684455 Curriculum Vitae(PDF)
  • E-mail: fumf@shanghaitech.edu.cn

Biography/ 个人简介: 

Dr. Minfan Fu received the B.S., M.S., and Ph.D. degrees inelectrical and computer engineering from University of Michigan-Shanghai JiaoTong University Joint Institute, Shanghai Jiao Tong University, Shanghai, Chinain 2010, 2013, and 2016. He is currently a Principle Investigator at School ofInformation Science and Technology (SIST), ShanghaiTech University, Shanghai,China. Between 2016 and 2018, he held a postdoctoral position with the Centerfor Power Electronics Systems (CPES), Virginia Polytechnic Institute and StateUniversity, Blacksburg, VA, USA.His researchinterests include wireless power transfer, ultra-high-frequency powerconversion, applications of wide-band-gap devices, magnetic integration,modeling and control of resonant convertors, ubiquitous power IoT, AI and bigdata based intelligent power network. 

He is a senior member of IEEE and asenior member of CPSS. He holds seven patents and has published over 100 papers in prestigious IEEE journals and conferences, such as IEEE Trans. IndustrialElectronics and IEEE Trans. Power Electronics. Currently, his total googlescholar citations exceeds 1900, and one of his first papers was listed byEssential Science Indicators (ESI) as top 1% highly cited papers in engineeringand publication years. His conf. paper for IECON 2019 won the IES-SYPAcompetition ( < 1%). He serves as the section chair for several internationalconferences (such as VEH, IECON, ECCE-Asia,ISIE). Currently, he serves as a reviewerfor IEEE Transactions on Power Electronics, IEEE Transactions on IndustrialElectronics, IEEE Transactions on Industrial Informatics, IEEE Transactions onMicrowave Theory and Techniques, and IEEE Transactions on Vehicular Technology,etc. In 2019, he is honored as the "Shanghai Eastern Scholar". He is included on an Elsevier list of the top 2% of scientists in their fields for either single-year impact in 2021.

傅旻帆,上海科技大学研究员,博士生导师。2010年,2013年及2016年在上海交通大学密西根学院取得本科,硕士及博士学位;2016年4月至2018年3月在美国弗吉尼亚理工大学电力电子中心从事博士后研究工作,合作导师为李泽元教授(中美工程院院士, IEEE Fellow);2018年3月加入上海科技大学信息科学与技术学院。现为IEEE 高级会员,中国电工技术学会高级会员,中国电源学会高级会员,中国电源学会无线电能传输技术及装置专业委员会委员。担任ICWPT2021会务主席,担任IECON,ISIE等国际会议分会主席(Section Chair),受邀在ISIE2020,IPEMC2020, ISIE2021,PEAS 2021 等国际会议上做特邀报告,同时担任IEEE Trans. Power Electronics, IEEE Trans. Ind. Electronics等十几个国际期刊的资深审稿人。目前主要从事电力电子与微波射频领域的相关研究,具体包括无线电能传输,高频磁集成,超高频变换器,电路建模与控制,宽禁带器件的应用等,其研究成果累计发表论文100余篇,期中IEEE Trans.系列35篇,谷歌索引量2000余次。主持国家自然科学基金项目、教育部产学研合作项目、和上海市扬帆计划各一项。于2018年入选上海市青年东方学者,2021年获评中国电工技术学会先进工作者,2021年入选斯坦福大学发布的全球前2%顶尖科学家“年度影响力(Single year impact)”榜单。

Working Experience/工作经历:

Assistant Professor at ShanghaiTech University03/2018 – Present

Postdoc at Virginia Tech. Center for Power Electronics Systems04/2016 – 03/2018

Education/教育背景:

Ph.D. in Electronic Science and Technology 04/2013 – 03/2016

Univ. of Michigan-SJTU Joint Institute, Shanghai Jiao Tong University 04/2016 – 03/2018

Dissertation Title: “Analysis and Control of Megahertz Wireless Power Transfer Systems”

M.S. in Electronic Science and Technology 09/2010 - 03/2013

Univ. of Michigan-SJTU Joint Institute, Shanghai Jiao Tong University

Thesis Title: “13.56 MHz Wireless Power Transfer System Design and Implementation”

B.S. in Electrical and Computer Engineering 09/2006 - 08/2010

Univ. of Michigan-SJTU Joint Institute, Shanghai Jiao Tong University

Research Interest / 研究领域:

High-frequency power electronics / 高频电力电子

Inductive power transfer / 磁场耦合式无线电能传输

Capacive power transfer / 电场耦合式无线电能传输

Modelling and control of resonant converter / 谐振变换器的建模与控制

Applications of wide-band-gap devices / 宽禁带功率半导体器件的应用

Power solutions of implanted devices / 植入式设备供电

Teaching / 教学:

Industry Practice, Undergraduatelevel, 1 credit, 2018 Summer

SI100B, Introduction to InformationScience and Technology, Undergraduate level, 4 credits (2019 Spring,2020 Spring)

EE273, Advanced Power ConversionTechniques, Graduate level, 4 credits (2018 Fall, 2019 Fall, 2020 Fall)

EE171, Power Electronics,Undergraduate level, 4 credits (2019 Spring, 2020 Spring, 2021 Spring, 2022 Spring)

EE111, Electronic Circuits,Undergraduate level, 4 credits (2021 Spring)

Honor / 荣誉:

Excellent Teacher of of ShanghaiTech /上科大优秀教师 (2022,2021)

Excellent Memtor of Shangdao College /上道书院优秀导师 (2022)

Second prize in the 1st teaching competition of political ideology /首届上海市课程思政教学展示活动二等奖(2022) 

Second prize in the teaching innovation competition of Shanghai /第二届上海市高校教师教学创新大赛地方高校正高组二等奖(2022)

Excellent course program of ShanghaiTech / 上海科技大学精品课程建设项目(2022)

Outstanding Reviewer Awards of IEEE Trans. Power Electron. / IEEE 电力电子期刊杰出审稿人 (2022)

Top 2% of scientists in their fields for either single-year impact or career impact /入选斯坦福大学发布全球前2%顶尖科学家 “年度影响力(Single year impact)”榜单 (2021,2020,2019)

SIST Excellence in Research /上科大信息学院优秀科研奖 (2022,2021)

Excellent volunteer of China Electrotechnical Society /中国电工技术学会先进工作者 (2021)

Excellent mentor of SIST /上科大信息学院优秀导师组 (2021)

Shanghai Eastern Scholar /上海市青年东方学者 (2019)

Excellent Instructor for the Industry Practice /上科大产业实践优秀导师 (2018)

Shanghai Sailing Program Award /上海市青年科技扬帆英才(2018)

National scholarship /国家奖学金(2015)

Top ten research groups of Shanghai Jiao Tong University /上海交大“凯源”十佳科研团队成员 (2014)

Excellent graduate student scholarship /优秀研究生奖学金(2014)

Covidien scholarship /科惠奖学金 (2014,2013)

Annual excellent volunteer for blood donation /上海交大无偿献血先进个人(2012)

Gold prize in undergraduate capstone /上海交大本科毕业设计金奖 (2010)

Research Fundings / 研究项目:

Power Electronics Experiment Platform Based on Matlab and Speedgoat Controller, Ministry of Education of China (202002224010), PI, 2021-2022. / 基于MATLAB与SPEEDGOAT的电力电子实验课程, 教育部产学研合作育人项目,主持,2021.1-2022.12.

Structure Duality and Space Multiplexing of WPT Systems Based on Uniform Coupler Model, NSFC funding (52007120), PI, 2021-2023. / 基于统一电路模型的近场无线传能耦合器结构对偶性理论与空间复用技术, 国家自然科学基金青年项目,主持, 2021.1.1-2023.12.31

Compensation decomposition and synthesis for capacitive power transfer systems, Shanghai sailing program (19YF1433700), PI, 2019-2022. / 基于电容耦合式无线充电系统的补偿网络衍生方法,上海市扬帆计划,主持,2019.5.1-2022.4.30

Optimal power distribution for MHz multiple-receiver WPT systems, Shanghai natural science foundation, 2016-2018.

High-efficiency high-power-density 110V/24V dc/dc modules, CRRC, 2016-2017.

WPT-based voltage equalizer for on-board batteries, Huawei, 2015-2016.

Optimal load control for wireless power transfer systems based on DC/DC converters, Intel, 2014.

Design of a power amplifier for MHz wireless power transfer systems, Intel, 2013.

Development of wireless charging system for supercapacitor-based vehicle, Beijing Jiao Tong Univ., 2013.

Evaluation and optimization of MHz wireless power transfer systems for PC, Intel, 2013.

People – Ph.D. Student

  • Guangdong Ning (宁广栋), 2021 Fall

    2019.9-present, ShanghaiTech University

    2013.9-2017.6, B.S., Nanjing University of Aeronautics and Astronautics

    Interests: modular design for resonant converters

    Email: ninggd@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Guangce Zheng (郑广策), 2021 Fall

    2019.9-present, ShanghaiTech University

    2015.9-2019.6, B.S., ShanghaiTech University

    Interests: modeling of resonant converters

    Email: zhenggc@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Yifan Jiang (蒋祎璠), 2022 Fall

    2019.9-present, ShanghaiTech University

    2015.9-2019.6, B.S., Shanghai University of Electric Power

    Interests: high-efficiency power amplifier

    Email: jiangyf1@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Heyuan Li (李鹤远), 2022 Fall

    2020.9-present, ShanghaiTech University

    2016.9-2020.6, University of Shanghai for Sci. & Tech.

    Interests: radiation model for WPT

    Email: lihy4@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Xinlin Wang (汪鑫林), 2023 Fall

    2021.9-present, ShanghaiTech University

    2016.9-2020.6, B.S., Hohai University

    Interests: Bidirectional WPT

    Email: wangxl3@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

People – M.S. StudentM

  • Xiaoxuan Ji (吉晓璇), 2021 Fall

    2021.9-present, ShanghaiTech University

    2017.9-2021.6, B.S., Central South University

    Interests:Single-inverter WPT

    Email: jixx@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Chaoqun Qi (祁超群), 2021 Fall

    2021.9-present, ShanghaiTech University

    2017.9-2021.6, B.S., Jilin University

    Interests: modeling of resonant converters

    Email: qichq@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Siyi Yao (姚思逸), 2022 Fall

    2022.9-present, ShanghaiTech University

    2018.9-2022.6, B.S., ShanghaiTech University

    Interests: Three-port WPT

    Email: yaosy2022@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Zhongchang Li (李忠昶), 2022 Fall

    2022.9-present, ShanghaiTech University

    2017.9-2021.6, B.S., Shanghai Jiao Tong University

    Interests: Wireless OBC

    Email: lizhch2022@shanghaitech.edu.com

    Curriculum Vitae[PDF]

  • Tianqi Li (李天琦), 2022 Fall

    2022.9-present,B.S., ShanghaiTech University

    2018.9-2022.6, B.S., Zhejiang University

    Interests: modeling of resonant converters

    Email: litq2022@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Kunxiao Zhou (周昆晓), 2022 Fall

    2022.9-present, ShanghaiTech University

    2018.9-2022.6, B.S., ShanghaiTech University

    Interests: modular design of resonant converters

    Email: zhoukx2022@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Shiqi Gao (高士齐), 2023 Fall

    2023.9-present, ShanghaiTech University

    2019.9-2023.6, B.S., ShanghaiTech University

    Interests: high-efficiency power amplifier

    Email: gaosq2023@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

  • Xiang Gao (高翔), 2023 Fall

    2023.9-present, ShanghaiTech University

    2019.9-2023.6, B.S., ShanghaiTech University

    Interests: resonant converters design with ML

    Email: gaoxiang2023@shanghaitech.edu.cn

    Curriculum Vitae[PDF]

Course

  • 课程名称:电力电子
  • 课程性质:本科生选修课
  • 课时学分:64学时,4学分
  • 学生对象:大二至大四本科生,可来自不同专业
  • 必修前置课程:电路基础

课程简介:电力电子(Power Electronics)这一名称是在上世纪60年代出现的,它是由电子学、电力学和控制理论三个学科交叉而形成的。电力电子利用半导体电子器件实现电能变换,有时也称为功率电子技术,目前在社会生产与生活中有着广泛的应用。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与信息电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。《电力电子》是电气工程专业必修的学科专业课,是应用于电力领域的电子技术,主要研究如何使用电力电子器件对电能进行变换和控制。本课程主要讲授电力电子的应用,基本功率半导体器件的特性,不同应用场景中的电能转换电路,使学生了解并掌握该领域的基本原理和电路分析方法。本门课程教学目标的设立综合考虑了国家战略,学科内容,与学校定位。从国家层面看,课程需要服务国家“双碳”战略,培养新一代“电气”人,引导其建立专业归属感与民族自豪感。从学科层面,电力电子是电气工程一级学科下五大二级学科之一,期望培养学生具备以下能力:1)了解电力电子应用场景;2)理解基本功率器件的特性;3)掌握该领域的原理和分析方法;4)熟悉不同应用中的电能转换电路。从学校层面看,本校强调“小规模、高水平、国际化”的办学风格,鼓励采取小班教学,通过学科交叉融合,培养一批科研能力强的高水平复合型人才。

  • 课程名称:高级电能变换技术
  • 课程性质:本研一体专业课
  • 课时学分:64学时,4学分
  • 学生对象:高年级本科生与研究生
  • 必修前置课程:电力电子

课程简介:电力电子是一门赋能型的应用学科,重点关注将某种形式的电能转换成特定负载所需要的形式,此类电路被广泛地应用于工业自动化、消费电子、轨道交通、航空航天、电力系统、数据中心、通信网络、物联网中。在不同的应用场景中,电力电子变换器的功率等级、输出电压电流特性、效率指标、可靠性需求,动态响应需求差异极大。研发人员需要在理解电力电子基本原理的基础上,熟练掌握并合理运用各种高级的电能变换技术,充分发挥不同功率半导体器件的优势,掌握多目标设计,把握设计的平衡点,定制化的开发出最适配的功率电路。本门课程将围绕电力电子的谐振变换技术展开,主要涵盖:串联谐振变换器,并联谐振变换器,LLC谐振变换器,ZVS准谐振变换器,ZCS准谐振变换器,多谐振变换器,PWM变换器的谐振软开关技术,无线电能传输系统中的高阶谐振变换器,超高频谐振变换器等。作为一门科研导向型的专业进阶课程,课程内容将不断更新,紧跟电力电子的最新技术与动态。

Research

Near-filed coupler

Both inductive power transfer (IPT) and capacitive power transfer (CPT) have shown great potential in various applications, such as consumer electronics, industrial automatics, and transportation systems. It is well known the both IPT and CPT are based on the near-field coupling. However, there is no uniform near-field coupling theory for system analysis and design, especially for the coupler model, structure, and coupling mechanism. 1)This research is devoted to explore the duality between the inductive and capacitive couplers, and then build a uniform understanding for near-filed WPT. The research first proposes a uniform model for both kinds of couplers. This model is able to use independent circuit parameter to represent the stored energy and transferred energy. Based on the parameter sensitivity analysis, a uniform compensation theory is then proposed to avoid resonance frequency shift under coupling variation. 2)Meanwhile, this research explores the relationship between the coupler structure and coupler model, based on which the structure duality is discovered and used to develop novel coupler structure. 3) In this research, novel space multiplexing methods are proposed by sharing the coupling space of magnetic field and electric field. These approaches are able to further improve the power transfer capability within limited space. Overall, this research will build a uniform analysis and design methodology for near-field WPT. New coupeler structure and coupling mechanism can be discovered to meet the various application demands.

基于磁场或电场耦合谐振的无线电能传输技术在消费电子、工业自动化和轨道交通等领域应用广泛。两类技术本质上虽然都是近场耦合传能,但是耦合器在电路模型、几何结构、与能量耦合方式上差异明显,缺乏统一的理论指导其分析与设计。本研究旨在探索两类耦合器未知的相似性,形成对近场传能的统一认知,探索新型的耦合结构与方式。1)研究以耦合器电路模型为切入点,建立了统一的近场电路模型,并基于参数的敏感性分析提出了统一的补偿网路设计理论;2)研究通过分析耦合器的电路模型与几何结构的映射关系,巧妙地发现了两类耦合器的结构对偶性,并提出全新的耦合结构设计方法;3)研究还将通过电场与磁场的空间复用实现全新的能量耦合方式,突破单一场传能的限制,提高空间的能量密度。研究结果将形成统一的近场耦合器分析与设计方法,为不同的应用提供更丰富的结构设计方案与能量耦合方式,最终为形成统一的近场无线传能理论打下基础。

Application-Driven WPT Techniques

Wireless power can be defined as the transmission of electrical energy from a power source to an electrical load without connecting wires. It is reliable, efficient, fast, low maintenance cost, and it can be used for short range or long range. The basic working principle of wireless power transfer is, two objects having similar resonant frequency and in magnetic resonance at powerfully coupled rule tends to exchange the energy, while dissipating relatively little energy to the extraneous off-resonant objects. Moreover, this method can be involved in a variety of applications, like to charge mobile phones, laptops wirelessly. And also this kind of charging gives a far lower risk of electrical shock as it would be galvanically isolated. This is an emerging technology, and further, the distance of power transfer can be improved as the study across the world is still going on.

近年来,基于磁耦合谐振(IPT)的无线电能传输技术(WPT)取得了飞速发展,由于其优异的传能特性,该技术已经在手机和电动车等经典应用上获得了市场的认可。与IPT对应,利用电场耦合谐振(CPT)也可实现无线传能,该技术可以弥补IPT在高涡流损耗等方面的不足,但是其自身耦合能力较弱的特性也较为明显。针对不同设备与应用环境,两类系统在一定程度上互为补充,已经能够初步满足一些常规的应用需求。现阶段,尤其是在新冠病毒肆虐的背景下,各国都意识到了工业制造的重要性。我国也面临着全产业链升级转型的迫切需求,需要依托智能制造、5G、物联网、大数据、人工智能、智慧能源等一大批新技术实现跨越式发展。在此过程中,通过无线电能传输技术为各种新兴的智能终端除去“最不智能”的最后一根线就显得尤为重要。

Model and control of power converter

There exists a continuous demand on the large-scale wireless charging of smart portable devices, such as robots, drones, electrical vehicles. In order to meet these demands, the inductive power transfer (IPT) technique has been gradually developed from system level to network level, which further requests the small-signal model and stability analysis to ensure the safe and stable operation of various systems and networks. This research is devoted to building, simplification, and unification of small signal model of various IPT systems, and then studies the stability of the IPT network under the bus of AC, DC or magnetic field. 1) This research would start from the modelling and simplification of single-stage IPT system, and develop the controller design method for frequency, amplitude, and phase modulation. 2) Meanwhile, this research would discuss the small-signal behavior for the two-stage IPT systems under distributed and concentrated control scheme, which helps the stability analysis and controller design. 3) When various IPT systems form the network under DC or AC grid, this research would evaluate the influence of the individual perturbation on the overall network, and develop the strategy for stable operation. 4) Finally, this research would propose a novel IPT network through the bus of magnetic field, and then explore the stability under the magnetic-field perturbation. In summary, this research will develop a general modeling and simplification method to build a uniform small-signal model, which would offer the theoretical guideline for the controller parameter design for various IPT systems and networks. It is particularly meaningful to build the fundamental theory for the stability analysis under the conductive and radiative perturbation.

在智能终端规模化充电需求的驱动下,基于磁场耦合谐振的无线电能传输技术正呈现大系统化与网络化的趋势,迫切需要通过小信号模型开展对于系统与网络的稳定性分析。本研究旨在系统层面建立、化简并统一小信号等效电路模型,进而在网络层面探索各类系统通过交流、直流或磁场母线组网后的稳定性问题。1)以单级系统为切入点,建立通用的建模与降阶方法,辅助系统在调频、调幅、调相下的控制器设计;2)提取两级系统在分布式与集中式控制架构下的小信号特征,开展多级系统的稳定性分析与控制器设计;3)在交、直流电网下,分析无线充电系统个体扰动对网络的影响,提出网络稳定运行的策略;4)提出磁场母线组网方法,建立辐射性扰动下该网络的稳定性分析方法。研究结果将形成通用的系统建模与化简方法,获得统一的小信号模型,为不同系统与网络的控制参数设计提供理论依据,最终为传导与辐射扰动下系统与网络的稳定性分析建立初步的理论基础。

Applications of WBG Devices

As the awareness of environment protection keeps increasing, there is more investment put in the studies of new energy, clean energy, renewable energy, and new technologies for high-efficiency power conversions to help further reduce wasted power. In the field of power electronics, researchers have discovered many new materials, device configurations and novel topologies. The WBG (Wide Band Gap) materials, SiC (Silicon Carbide) and GaN (Gallium Nitride), show unparalleled promise of making next generation of high performance devices in power conversion for EVs (electric vehicles), renewable energy, cloud computing, fast charging stations, and 5G communication, etc. Use of WBG devices in energy infrastructure offers great efficiency, improved thermal performance, compact size, light weight, and reduced cost.

电力电子变换器通过控制功率开关实现能量的高效率转化。其开关器件特性决定了不同应用场合下变换器的所适合的拓扑、开关技术、与调制方式。近半个世纪以来,伴随的半导体材料及加工工艺的蓬勃发展,半导体功率开关几乎每隔30年就发生革命性的变化,从而影响着整一代变化器的设计与应用。目前,基于硅器件的各类功率变换器仍是工业应用的主流,但变化器的效率及功率密度难以再进一步提升,因为传统硅器件性能已接近其材料本身决定的理论极限。而以碳化硅(SiC)氮化镓(GaN)为代表的宽禁带导体由于具有宽带隙、高饱和和漂移度、高临界击穿电场等突出优点,成为制作大功率、高频、高温及抗辐照电子器件的理想替代材料。新一代宽禁带半导体器件的出现在未来十年必将将导致一场新的电力电子变化器的革命。在开关特性上,宽禁带半导体功率开关器件比对应的硅器件具有更小的开通损耗、关断损耗及驱动损耗,配合软开关技术可以把开关频率提高到十倍于现有变换器的级别,最终实现变化器功率密度及效率的同时提高。随着频率的提高,变换器中的磁性元件,例如电感及变压器可以使用更少的匝数,从而使这些磁性元件能够使用有限层数的印刷电路板作为绕组。此类平面磁结构可以更有效地利用磁集成、绕组交错及磁屏蔽等技术进一步减小磁芯体积及磁性元件损耗,从而提升变换器整体的效率及功率密度。本研究针对不同应用研发新的基于宽禁带半导体器件的功率变化器,具体研究内容包括拓扑及系统结构评估,调制方式分析,磁优化设计,变换器小信号建模与数字控制,最终为提出一系列新型电力电子变换器。

Publication

Invited Talks
Tutorials 
  • “MHz Wireless Power Transfer: Architecture, Topology, and Design”, International Conference on Wireless Power Transfer (ICWPT), Chongqing, China, Dec. 2-4, 2022.
  • “Analysis and Design of Near-Field Couplers for Wireless Power Transfer”, International Conference on Industrial Informatics (INDIN), Perth, Australia, July 25-28, 2022.
  • " Analysis and Design of Near-Field Couplers for Wireless Charging Applications", IEEE International Power Electronics and Application Symposium (PEAS), Shanghai, China, Nov. 12-15, 2021.
  • " Emerging Applications and Designs of High-Frequency Wireless Power Transfer Systems", IEEE International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, June 20-23, 2021. 
  • “Multi-Megahertz Wireless Power Transfer Systems”, IEEE International Power Electronics and Motion Control Conference (IPEMC), Nanjing, China, Nov. 29 - Dec. 3, 2020.
  • "System-Level Design and Optimization of Multi-Megahertz Wireless Power Transfer Systems", IEEE International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, June 17-19, 2020.
  • Academic Seminars/Reports 
  • "Wireless Power Transfer: Navigating Early Academic Career", Nanjing University of Science and Technology, June 8, 2021. 
  • "Emerging Charging Solution for Electric Vehicle", Energy Storage Committee of IEEE PES, Shanghai, China, April 25th, 2021.
  • "Magnetic Resonance Based Megahertz Wireless Power Transfer Systems", Tongji University, Shanghai, China, Nov., 2020.
  • "Megahertz Wireless Power Transfer", Tongji University, Shanghai, China, Oct. 22, 2019.
  • "Review of Megahertz Wireless Power Transfer", SJTU-UM Joint Institute, Shanghai Jiao Tong University, Shanghai, China, Nov., 2018.
  • "Megahertz Wireless Power Transfer: From 2D to 3D", 2018 ShanghaiTech Workshop on Emerging Devices, Circuits and Systems, Shanghai, China, June, 2018.
  • "A 300-W High-Efficiency High-Power-Density Rail Grade DC/DC Module Based on GaN Devices", School of Information Science and Technology, Central South University, Changsha, China, May, 2018.
  • Industrial Reposts
  • “Wireless Power Transfer for Electric Vehicles”, Shanghai Automotive, Shanghai, China, Jan., 2020
  • “A Critical Review of Wireless Chargers for New Energy Vehicle”, Forum of Customer Energy Management Technology, Shanghai China, Nov., 2019.
  • “Wireless Power Transfer and its Applications”, Anjie Wireless Technology Co., Ltd., Suzhou, China, Aug., 2019.
  • “Wireless Chargers for Consumer Electronics”, Nanfu Battery, Nanping, China, Nov. 2018.
  • Journal Papers

    Submitted journal papers ( name*: corresponding author; name: suppervised students)

    [J1].C. Qi, G. Zheng, J. Liang, Y. Liu, H. Wang, and M. Fu*, “A Simplified Three-order Small-signal Model for Capacitive Power Transfer System Using Series Compensation", IEEE Transactions on Power Electronics, under review.
    [J2].X. Ji, P. Zhao, H. Wang, Z. Yang and M. Fu*, " Multiple-Receiver Inductive Power Transfer System Based on Multiple-Coil Power Relay Module", IEEE Transactions on Circuits and Systems I: Regular Papers, under review.
    [J3].G. Ning, K. Zhou and M. Fu*, “Modular Wireless Charger Based on Dual-Band Design”,IEEE Transactions on Circuits and Systems II: Express Briefs, under review.
    [J4].Y. Yin, H. Li, S. Gao, Y. Li, X. Zhang and M. Fu*, "A Low-radiation Integrated Receiver for Inductive Power Transfer," IEEE Transactions on Power Electronics, under review.
    Published & accepted journal papers
    [J5].K. Zhao, G. Ning, R. He, H. Yang, H. Wang, and M. Fu*, "A Novel Driving Scheme for Inductive Power Transfer Systems Using Decoupled Transmitter Coils", IEEE Journal of Emerging and Selected Topics in Industrial Electronics, early access.
    [J6].P. Zhao, X. Ji, H. Wang, and M. Fu*, “H5-Bridge-Based Bowl-Shape Wireless Charger for Multiple Loads”, IEEE Transactions on Industrial Electronics, early access.
    [J7]. Y. Jiang, H. Li, Y. Liu, J. Liang and M. Fu*, “Multi-Constraint Design of Single-Switch Resonant Converters Based on Extended Impedance Model", Journal of Emerging and Selected Topics on Power Electronics, early access.
    [J8].L. Gao, L. Teng, M. Fu, H. Wang, and J. Liang*, “A Switched-mode Self-sensing Solution for Piezoelectric Synchronous Electric Charge Extraction (SECE)”, IEEE Transactions on Industrial Electronics, early access.
    [J9].H. Li, Y. Liu, and M. Fu*, “Circular Capacitive Coupler with Multi-Layer Interleaving for Stable Output", IEEE Transactions on Microwave Theory and Techniques, early access.
    [J10].L. Wang, H. Wang*, M. Fu, J. Liang, and Y. Liu, “A Three-Port Energy Router for Grid-Tied PV Generation Systems with Optimized Control Methods", IEEE Transactions on Power Electronics, vol. 38 no. 1, pp. 1577-1582, Jan. 2023
    [J11]. G. Zheng, C. Qi, J. Liang, Y. Liu, H. Wang, and M. Fu*, “Uniform and Simplified Small-Signal Model for Inductive Power Transfer Systems", IEEE Transactions on Power Electronics, vol. 38 no. 2, pp. 658-664, Jan. 2023
    [J12].Z. Wei, H. Wang*, Y. Lu, D. Shu, G. Ning, and M. Fu*, "Bidirectional constant current string-to-cell battery equalizer based on L2C3 resonant topology", IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 666-577, Jan. 2023.
    [J13].R. He, X. Wang, M. Fu*, “Maximized Efficiency of Multi-coil Inductive Power Transfer System” Journal of Power Supply, vol. 20, no. 6, pp. 102-110, 2022.
    [J14]. J. Liang, L. Wang, M. Fu, J. Liang and H. Wang*, "Overview of Voltage Regulator Modules in 48V Bus-based Data Center Power Systems," CPSS Trans. Power Electron. Appl., vol. 7, no. 3, pp. 666-577, Jan. 2022.
    [J15].G. Zheng, K. Zhao, H. Wang, J. Liang, M. Fu*, “Small-Signal Model for Inductive Power Transfer Systems Using LCC-S Compensation”. Transactions of China Electrotechnical Society,2022,37(21):5369-5376.
    [J16].Y. Yin, H. Li, and M. Fu*, “Inductive Coupler Analysis Based on Scattering Parameters with Non-Standard Terminal Impedance", IEEE Journal of Emerging and Selected Topics on Industrial Electronics, vol. 3, no. 4, pp. 12665-12675, Sep. 2022.
    [J17].R. He, P. Zhao, G. Ning, K. Yue, Y. Liu, and M. Fu*, “Optimal Driving and Loading Scheme for Multiple-Receiver Inductive Power Transfer Systems", IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 12665-12675, Dec. 2022.
    [J18].S. Wang, R. He, J. Liang, and M. Fu*, “High-Order Compensated Capacitive Power Transfer Systems with Coupling Independent Resonance", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 8, pp. 3450-3460, Aug. 2022.
    [J19].G. Ning, K. Zhao and M. Fu*, “A Passive Current Sharing Method for Multi-Transmitter Inductive Power Transfer Systems", IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4617-4626, May 2022.
    [J20].L. Wang, M. Fu, H. Wang*, Z. Xie, and J. Liang, “Three-Port Power Electronic Interface with Decoupled Voltage Regulation and MPPT in Electromagnetic Energy Harvesting Systems", IEEE Transactions on Industry Application, vol. 58, no. 2, pp. 2144-2154, March-April 2022.
    [J21].G. Zheng, P. Zhao, H. Li, and M. Fu*, “Small-Signal Model of an Inductive Power Transfer System Using LCC–LCC Compensation", IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 1201-1210, Jan.-Feb. 2022.
    [J22].P. Zhao, M. Zhou, Y. Jiang, and M. Fu*, “Horizontal Charging Area Extension Based on Switchable Relay Coils", IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 1071-1080, Jan.-Feb. 2022.
    [J23].Y. Liu, T. Wu, and M. Fu*, “Interleaved Capacitive Coupler for Wireless Power Transfer", IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 13526-13535, Dec. 2021.
    [J24].J. Kang*, Y. Liu, L. Sun, Z. Zhong, and M. Fu, “A Reduced-Order Model for Wirelessly Excited Machine Based on Linear Approximation", IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12389-12399, Nov. 2021.
    [J25].P. Zhao, G. Zheng, R. He, Y. Liu and M. Fu*, “A 45-W Two-Stage Wireless Fast Charger Using Unregulated Inductive Power Transfer", IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 2, no. 3, pp. 287-296, July 2021.
    [J26].K. Yue, Y. Liu*, P. Zhao, B. Wang, M. Fu, and H. Wang, “Dynamic State Estimation Enabled Health Indicator for Parametric Fault Detection in Switching Power Converters”, IEEE Access, vol.9, 33224-33234, 2021.
    [J27].J. Feng*, Q. Li, F. Lee, and M. Fu, “LCCL-LC Resonant Converter and Its Soft Switching Realization for Omnidirectional Wireless Power Transfer Systems", IEEE Transactions on Power Electronics, vol.36, no.4, 3828-3839, 2020.
    [J28].M. Fu*, C. Fei, Y. Yang, Q. Li, and F. Lee, “A GaN-Based DC/DC Module for Railway Applications: Design Consideration and High-Frequency Digital Control", IEEE Transactions on Industrial Electronics, vol.67, no.2, 1638-1647, 2020.
    [J29].X. Li, L. Teng, H. Tang, J. Chen, H. Wang, Y. Liu, M. Fu, and J. Liang*, “ViPSN: a vibration-powered IoT platform,” IEEE Internet of Things Journal, vol.8, no.3, 1728-1739, 2020.
    [J30].S. Wang, J. Liang, and M. Fu*, “Analysis and Design of Capacitive Power Transfer Systems Based on Induced Voltage Source Model", IEEE Transactions on Power Electronics, vol.35, no.10, 10532-10541, 2020.
    [J31].Y. Liu, B. Wang, X. Zheng*, D. Lu, M. Fu and N. Tai, “Fault Location Algorithm for Non-Homogeneous Transmission Lines Considering Line Asymmetry", IEEE Transactions on Power Delivery, vol.35, no.5,2425 - 2437, 2020.
    [J32].R. He, P. Zhao, M. Fu*, Y. Liu, H. Wang, and J. Liang, “Decomposition and Synthesis of High-Order Compensation Inductive Power Transfer Systems for Improved Output Controllability ", IEEE Transactions on Microwave Theory and Technique, vol.67, no.11, 4514-4523, 2019.
    [J33].J. Feng*, Q. Li, Fred C. Lee, and M. Fu, “Transmitter Coils Design for Free-Positioning Omnidirectional Wireless Power Transfer System", IEEE Transactions on Industrial informatics, vol.15, no.8, 4656-4664, 2019.
    [J34]. X. Lu, Y. Chen, M. Fu, and H. Wang*, “Multi-Objective Optimization Based Real-Time Control Strategy for Battery/Ultracapacitor Hybrid Energy Management Systems", IEEE Access, vol.7, 11640-11650, 2019.
    [J35].M. Fu*, C. Fei, Y. Yang, Q. Li, and Fred C. Lee, “Optimal Design of Planar Magnetic Components for A Two-Stage GaN-Based DC/DC Converter", IEEE Transactions on Power Electronics, vol.34, no.4, 3329-3338, 2019. 
    [J36].M. Fu, Z. Tang, and C. Ma*, “Analysis and Optimized Design of Compensation Capacitors for A Megahertz WPT System Using Full-Bridge Rectifier", IEEE Transactions on Industrial Informatics, vol.15, no.1, 95-104, 2019. 
    [J37].M. Fu, C. Zhao, J. Song, and C. Ma*, “A Low-Cost Voltage Equalizer Based on Wireless Power Transfer and Voltage Multiplier", IEEE Transactions on Industrial Electronics, vol.65, no.7, 5487-5496, 2018.
    [J38].H. Yin, M. Fu, M. Liu, J. Song, and C. Ma*, “Autonomous Power Control in A Reconfigurable 6.78 Megahertz Multiple-receiver Wireless Charging System”, IEEE Transactions on Industrial Electronics, vol.65, no.8, 6177-6187, 2018. 
    [J39].M. Fu, H. Yin, M. Liu, Y. Wang, and C. Ma*, “A 6.78MHz Multiple-Receiver Wireless Power Transfer System with Constant Output Voltage and Optimum Efficiency", IEEE Transactions on Power Electronics, vol.33, no.6, 5330-5340, 2018.
    [J40].M. Liu, M. Fu, C. Ma*: "Battery Cell Equalization via Megahertz Multiple-Receiver Wireless Power Transfer", IEEE Transactions on Power Electronics, vol.33, no.5, 4135-4144, 2018. (CAS Q1)
    [J41].M. Fu, H. Yin, and C. Ma*, “Megahertz Multiple-Receiver Wireless Power Transfer Systems with Power Flow Management and Maximum Efficiency Point Tracking", IEEE Transactions on Microwave Theory and Techniques, vol.65, no.11, 4285-4293, 2017. 
    [J42].M. Liu, M. Fu, and C. Ma*, “Low-Harmonic-Contents and High-Efficiency Class E Full-Wave Current-Driven Rectifier for Megahertz Wireless Power Transfer Systems”, IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1198-1209, 2017. 
    [J43].M. Fu, H. Yin, M. Liu, and C. Ma*, “Loading and Power Control for A High-Efficiency Class E PA Driven Megahertz WPT System”, IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6867-6876, 2016. 
    [J44].M. Fu, T. Zhang, P. Luk , X. Zhu, and C. Ma*, “Compensation of Cross Coupling in  Multiple-Receiver Wireless Power Transfer Systems”,IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 474-482, 2016.
    [J45].M. Liu, M. Fu and C. Ma*, “Parameter Design for A 6.78-MHz Wireless Power Transfer System Based on Analytical Derivation of Class E Current-Driven Rectifier”, IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4280-4291, 2016. 
    [J46].M. Fu, T. Zhang, C. Ma*, X. Zhu, “Wireless Power Transfer Using Magnetic Resonance Coupling: Basic Considerations and Practices”, Transactions of China Electrotechnical Society, vol. 30, sup. 1, pp.6-12, 2015. (Chinese)
    [J47].M. Fu, T. Zhang, C. Ma, and X. Zhu*, “Efficiency and Optimal Loads Analysis for Multiple-Receiver Wireless Power Transfer Systems”, IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 801–812, 2015. 
    [J48].M. Fu, H. Yin, X. Zhu, and C. Ma*, “Analysis and Tracking of Optimal Load in Wireless Power Transfer Systems”, IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3952–3963, 2015. (ESI highly cited)
    [J49].M. Fu, C. Ma, and X. Zhu*, “A Cascaded Boost-Buck Converter for High Efficiency Wireless Power Transfer Systems”, IEEE Transactions on Industrial Informatics, vol. 10, no. 3, pp. 1972–1980, 2014.
    [J50].F. Wang,Y. Wang*, and M. Fu, “Efficiency Optimization in Low and Medium Power Range of New Energy Grid-connected Three-level Inverter”, Automation of Electric Power Systems, vol. 38, sup. 3, pp.101-105, 2014. (Chinese)
    Conf. Papers:
    [C1].X. Yu, P. Zhao, K. Chao, X. Ji, M. Fu, "Power Relay Module Based Charging Function Extension for Standard Wireless Charger ", IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, China, Nov. 4-7, 2022.
    [C2].S. Gao, Y. Liu, Y. Yin and M. Fu,” A Low Radiation Capacitive Coupler and Its Compensation”, 23rd IEEE International Conference on Industrial Technology (ICIT), Shanghai, China, Aug. 22 -25, 2022.
    [C3].H. Li, Y. Liu, Y. Ying, M. Fu, "S Circular Capacitive Coupler for Stable Output Under Horizontal Misalignment”, The 31th International Symposium on Industrial Electronics (ISIE), Anchorage, Alaska, USA, June 1-3, 2022.
    [C4].C. Qi, G. Zheng, Y. Yin, H. Li, M. Fu, "Small-Signal Model for Capacitive Power Transfer Systems Using Series Compensation”, The 31th International Symposium on Industrial Electronics (ISIE), Anchorage, Alaska, USA, June 1-3, 2022.
    [C5].K. Chao, P. Zhao, X. Yu, X. Ji, M. Fu, "Power Relay Module Based Multiple-load Charging Capability Extension”,48th Annual Conference of the IEEE Industrial Electronics Society (IECON), Brussels, Oct. 18 - 21, 2022.
    [C6].Y. Yin, H. Li, M. Fu, " An Integrated Receiver for Inductive Power Transfer", IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, Michigan, Oct. 9 – 13, 2022.
    [C7].Y. Jiang, R. He, K. Zhao, M. Fu, " Impedance-Model-Based Design of High-Order Class E Inverter", IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, Michigan, Oct. 9 -13, 2022.
    [C8].X. Wang , R. He , G. Ning , M. Fu, “Optimal Driving Current Interval for Multiple-Receiver Inductive Power Transfer System”, IEEE Wireless Power Week (WPW), Bordeaux, FRANCE, July 5 – 8, 2022.
    [C9].X. Ji , P. Zhao , K. Chao, X. Yu , M. Fu, “Wireless Charging Capability Extension Using Power Relay Module”, IEEE Wireless Power Week (WPW), Bordeaux, FRANCE, July 5 – 8, 2022.
    [C10].S. Yao , M. Fu , H. Li , Y. Yin , P. Zhao, “Coupler Comparison of Inductive and Capacitive Power Transfer Systems”, International Conference on Wireless Power Transfer (ICWPT), Chongqing, China, September, 2022.
    [C11].K. Zhao, M. Fu*, G. Ning, R. He, H. Yang, and H. Wang, "A novel driving scheme for inductive power transfer systems using decoupled transmitter coils," in Proc. Int. Power Electron. Conf. (ECCE Asia), Himeji, Japan, May 2022.
    [C12].Kang Yue, Yu Liu*, Xinguo Zhang, Rong He and Minfan Fu, “Identifying Complete Set of Parameters Using Transmitter Side Information for two-TX-one-RX Wireless Power Transfer Systems”, IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, Mar. 2022.
    [C13].R. He, H. Wang*, and B. Xue, "Automatic resonant frequency tracking scheme for LLC resonant converter based on adaptive extended state observer," IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, Mar. 2022.
    [C14].Z. Wei, H. Wang*, Y. Lu, G. Ning and M. Fu, "Bidirectional constant current S2C battery equalizer based on fixed-frequency L2C3 resonant converter," IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, Mar. 2022.
    [C15].B. Xue, H. Wang*, R. He, P. Zhao, M. Fu and Y. Liu, "A ZVS pulse width modulation scheme for active class-E rectifier based IPT systems," IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, Mar. 2022.
    [C16].Y. Jiang, H. Li and M. Fu, "High-Frequency DC/DC Converter Based on Differential Load-Independent Class E Inverter" IEEE International Power Electronics and Application Symposium (PEAS) Shanghai, China, Nov. 2021.
    [C17].Y. Jiang, H. Li and M. Fu, "Bidirectional High-Frequency Inductive Power Transfer Systems Based on Differential Load-Independent Class E Converters," 47th Annual Conference of the IEEE Industrial Electronics Society (IECON), Oct. 13-16, 2021.
    [C18].G. Ning and M. Fu, "Modelling and Analysis of Current Sharing for Two transmitter Inductive Power Transfer System Based on LC-S Compensation", International Conference on Wireless Power Transfer (ICWPT), Nanjing, China, June 25-28, 2021.
    [C19].H. Li, Y. Jiang, and M. Fu, “Evaluation of Radiative EMI in IPT Systems”, International Conference on Wireless Power Transfer (ICWPT), Nanjing, China, June 25 - 28, 2021.
    [C20].K. Zhao, G. Ning, and M. Fu, “A Single Variable Control Method for Bidirectional Inductive Power Transfer”, International Conference on Wireless Power Transfer (ICWPT), Nanjing, China, June 25 - 28, 2021.
    [C21].S. Wang, R. He, and M. Fu, "Modeling and Analysis about Capacitive Coupler of Capacitive Power Transfer System", International Conference on Wireless Power Transfer (ICWPT), Nanjing, China, June 25-28, 2021.
    [C22].M. Zhou, P. Zhao, and M. Fu, “Charing Area Extension of Qi-Based Wireless Fast Charger”, International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, June 20 - 23, 2021.
    [C23]. L. Wang, H. Wang, Y. Liu, J. Liang, M. Fu, "A Fully ZVS Dual-Active-Bridge Based Three-Port Converter with High Integration", IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, Arizona, June 9-12, 2021.
    [C24].L. Gao, T. Li, J. Liang, H. Wang, Y. Liu, M. Fu, "A Self-Sensing Synchronous Electric Charge Extraction (SECE) Solution for Piezoelectric Energy Harvesting Enhancement", IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, Arizona, June 9-12, 2021.
     
        [C25].K. Yue, Y. Liu, P. Zhao, M. Fu, H. Wang, and J. Liang, “Coupling Coefficient and Load Estimation for Wireless Power Transfer Systems with Transmitter Side Input Current”, IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, Arizona, June 9-12, 2021.
    [C26].G. Zheng, K. Zhao, H. Wang, J. Liang and M. Fu, “Reduced-Order Model for Inductive Power Transfer Systems”, IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, Arizona, June 9-12, 2021.
    [C27].P. Zhao, K. Yue, Y. Jiang, Y. Liu and M. Fu, “Heat Distribution of IPT Receiver with Low-Voltage and High-Current Output”, IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, Arizona, June 9-12, 2021.
    [C28].G. Ning, P. Zhao, R. He, and M. Fu, “A Novel Passive Current Sharing Method for a Two-Receiver-Coil IPT System”, IEEE Wireless Power Week (WPW), Seoul, Korea, May 5 - 9, 2020.
    [C29].R. He, G. Ning, and M. Fu, “A D4Q Pad with High Misalignment Tolerance for Inductive Power Transfer System”, IEEE Wireless Power Week (WPW), Seoul, Korea, May 5 - 9, 2020.
    [C30]. L. Wang, M. Fu, and H. Wang, "A three-port power electronic interface to harvest the maximum power in electromagnetic energy harvesting systems," 9th International Power Electronics and Motion Control Conference (IPEMC), Nanjing, China, Nov 29-Dec 2, 2020.
    [C31].Y. Liu, S. Wang, G. Zheng, G. Ning, T. Wu and M. Fu, “Induced Voltage Source Model for Capacitive Power Transfer Using Vertical Coupler”, International Power Electronics and Motion Control Conference (IPEMC), Nanjing, China, Nov 29-Dec 2, 2020.
    [C32].G. Zheng, P. Zhao, G. Ning, Y. Liu, and M. Fu, “Zero Voltage Switching of a Low-Power IPT System with High-Step Down Voltage Ratio”, International Power Electronics and Motion Control Conference (IPEMC), Nanjing, China, Nov 29-Dec 2, 2020.
    [C33].G. Ning, S. Wang, G. Zheng, Y. Liu, and M. Fu, “A Novel Passive Current Sharing Method for a Two-Transmitter One-Receiver WPT System”, International Power Electronics and Motion Control Conference (IPEMC), Nanjing, China, Nov 29-Dec 2, 2020.
    [C34].S. Wang, J. Liang, H. Wang, and M. Fu, “An Induced Voltage Source Model for Capacitive Power Transfer”, IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, Mar. 15-19, 2020.
    [C35].R. He, M. Fu, “High-order Compensations for Inductive Power Transfer”, CPSS Annual Conference, Shenzhen, China, Nov.1-4, 2019.
    [C36].P. Zhao, R. He, and M. Fu, "A Novel Wireless Faster Charger Using Unregulated IPT", Annual Conference of the IEEE Industrial Electronics Society (IECON), Lisbon, Portugal, Oct. 14-17, 2019. (Award paper in IES-SYPA competition,top 1%)
    [C37].K. Yue, Y. Liu, P. Zhao, R. He, "Time Domain Coupling Coefficient Estimation Using Transmitter-side Information in Wireless Power Transfer System", Annual Conference of the IEEE Industrial Electronics Society (IECON), Lisbon, Portugal, Oct. 14-17, 2019.
    [C38].K. Yue, Y. Liu, R. He, M. Fu, and H. Wang, "Model-Based Parametric Fault Detection in Power Electronic Converters", IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, Sep. 29-Oct. 10, 2019.
    [C39].J. Song, M. Liu, M. Fu, and C. Ma, “High Power Density Stacked-Coils Based Power Receiver for MHz Wireless Power Transfer", IEEE Wireless Power Week (WPW), London, England, Jun. 17-21, 2019.
    [C40].M. Fu, C. Fei, Y. Yang, Q. Li, and F. Lee, “A Two-Stage Rail Grade DC/DC Converter Based on GaN Device”, IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, California, USA, Mar. 17-21, 2019.
    [C41].M. Fu, C. Fei, Y. Yang, Q. Li, and F. Lee, “Design Consideration of a Two-Stage Rail Grade DC/DC Converter”, CPES Annual Conference, Blacksburg, Virginia, USA, Apr. 8-10, 2018.
    [C42].M. Fu, Y. Yang, C. Fei, Q. Li, and F. Lee, “Optimal Design of Planar Magnetic Components for A Two-Stage Rail Grade DC/DC Converter”, CPES Annual Conference, Blacksburg, Virginia, USA, Apr. 8-10, 2018.
    [C43].J. Fen, M. Fu, Q. Li, and F. Lee, “Resonant Converter with Coupling and Load Independent Resonance for Omnidirectional Wireless Power Transfer Application”, IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, Oct. 1-5, 2017.
    [C44].H. Yin, M. Fu, C. Zhao, and C. Ma, “A Decentralized Charging Control of a Multiple-Receiver Wireless Power Transfer System Using Ultracapacitor Semi-active Topology”, IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, Jun. 8-10, 2016.
    [C45].M. Fu, Z. Tang, M. Liu, S. Liu, X. Zhu and C. Ma, “Output Power Improvement by Impedance Matching Networks for a Class E Power Amplifier Driven Wireless Power Transfer Systems”, Annual Conference of China Electrotechnical Society, Wuhan, China, Oct. 25-27, 2015.
    [C46].M. Liu. M. Fu, Z. Tang, S. Liu, X. Zhu and C. Ma, “Design Procedure of a Class E DC/DC Converter for Megahertz Wireless Power Transfer”, Annual Conference of China Electrotechnical Society, Wuhan, China, Oct. 25-27, 2015.
    [C47].Z. Tang, M. Fu, M, Liu and C. Ma, “Optimization of the Compensation Capacitors for Megahertz Wireless Power Transfer Systems”, Annual Conference of the IEEE Industrial Electronics Society (IECON), Yokohama, Japan, Nov. 9-12, 2015.
    [C48].H. Yin, M. Fu, M, Liu and C. Ma, “Power Distribution of a Multiple-Receiver Wireless Power Transfer System: A Game Theoretic Approach”, Annual Conference of the IEEE Industrial Electronics Society (IECON), Yokohama, Japan, Nov. 9-12, 2015.
    [C49].S. Liu, M. Liu, M. Fu, C. Ma, and X. Zhu, “A High-Efficiency Class-E Power Amplifier with Wide-Range Load in WPT Systems”, IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, May 13-15, 2015.
    [C50].M. Fu, Z. Tang, M. Liu, X. Zhu and C. Ma, “Full-Bridge Rectifier Input Reactance Compensation in Megahertz Wireless Power Transfer Systems”, IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW), Daejeon, South Korea, Jun. 5-6, 2015.
    [C51].M. Liu, M. Fu, Z. Tang, and C. Ma, “A Compact Class E Rectifier for Megahertz Wireless Power Transfer”, IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW), Daejeon, South Korea, Jun. 5-6, 2015.
    [C52].C. Zhao, H. Yin, M. Fu, and C. Ma, “Analysis, control, and wireless charging of energy systems using ultracapacitors”, IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, Dec. 17-19, 2014.
    [C53].M. Fu, T. Zhang, C. Ma, and X. Zhu, "A Review of Megahertz Wireless Power Transfer Systems Based on Magnetic Resonance Coupling", International Conference of Wireless Power Transmission Technology and Application, Nanjing, China, Oct. 27-28, 2014.
    [C54].M. Fu, T. Zhang, X. Zhu, and C. Ma, “Subsystem-Level Efficiency Analysis of a Wireless Power Transfer System”, IEEE Wireless Power Transfer Conference (WPTC), Jeju City, South Korea, May 8-9, 2014.
    [C55].T. Zhang, M. Fu, X. Zhu, and C. Ma, “Optimal Load Analysis for a Two-Receiver Wireless Power Transfer System”, IEEE Wireless Power Transfer Conference (WPTC), Jeju City, South Korea, May 8-9, 2014.
    [C56].M. Fu, T. Zhang, C. Ma, X. Zhu, “Wireless Charging of a Supercapacitor Model Vehicle Using Magnetic Resonance Coupling”, ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Portland, Oregon, USA, Aug. 4-7, 2013.
    [C57].M. Fu, T. Zhang, X. Zhu, and C. Ma, “A 13.56 MHz Wireless Power Transfer System without Impedance Matching Networks”, IEEE Wireless Power Transfer Conference (WPTC), Perugia, Italy, May. 15-16, 2013.
    [C58].C. Ma, X. Zhu, and M. Fu, “Wireless Charging of Electric Vehicles: A Review and Experiments", ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, Aug. 28-31, 2011.

    Contact