Applications of WBG Devices


Applications of Wide-Band-Gap Devices / 宽禁带功率器件的应用


微信截图_20220901111710.png

As the awareness of environment protection keeps increasing, there is more investment put in the studies of new energy, clean energy, renewable energy, and new technologies for high-efficiency power conversions to help further reduce wasted power. In the field of power electronics, researchers have discovered many new materials, device configurations and novel topologies. The WBG (Wide Band Gap) materials, SiC (Silicon Carbide) and GaN (Gallium Nitride), show unparalleled promise of making next generation of high performance devices in power conversion for EVs (electric vehicles), renewable energy, cloud computing, fast charging stations, and 5G communication, etc. Use of WBG devices in energy infrastructure offers great efficiency, improved thermal performance, compact size, light weight, and reduced cost.

电力电子变换器通过控制功率开关实现能量的高效率转化。其开关器件特性决定了不同应用场合下变换器的所适合的拓扑、开关技术、与调制方式。近半个世纪以来,伴随的半导体材料及加工工艺的蓬勃发展,半导体功率开关几乎每隔30年就发生革命性的变化,从而影响着整一代变化器的设计与应用。目前,基于硅器件的各类功率变换器仍是工业应用的主流,但变化器的效率及功率密度难以再进一步提升,因为传统硅器件性能已接近其材料本身决定的理论极限。而以碳化硅(SiC)氮化镓(GaN)为代表的宽禁带导体由于具有宽带隙、高饱和和漂移度、高临界击穿电场等突出优点,成为制作大功率、高频、高温及抗辐照电子器件的理想替代材料。新一代宽禁带半导体器件的出现在未来十年必将将导致一场新的电力电子变化器的革命。在开关特性上,宽禁带半导体功率开关器件比对应的硅器件具有更小的开通损耗、关断损耗及驱动损耗,配合软开关技术可以把开关频率提高到十倍于现有变换器的级别,最终实现变化器功率密度及效率的同时提高。随着频率的提高,变换器中的磁性元件,例如电感及变压器可以使用更少的匝数,从而使这些磁性元件能够使用有限层数的印刷电路板作为绕组。此类平面磁结构可以更有效地利用磁集成、绕组交错及磁屏蔽等技术进一步减小磁芯体积及磁性元件损耗,从而提升变换器整体的效率及功率密度。本研究针对不同应用研发新的基于宽禁带半导体器件的功率变化器,具体研究内容包括拓扑及系统结构评估,调制方式分析,磁优化设计,变换器小信号建模与数字控制,最终为提出一系列新型电力电子变换器。













NEWS

CONTACT

Name:Minfan Fu

Name:fumf@shanghaitech.edu.cn

Address:Room 534, SIST Building 3 School of Info. Science and Tech. ShanghaiTech University 393 Middle Huaxia Road Pudong, Shanghai 201210 Tel: +86-021-20684455